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The problems associated with the modification of Hamilton’s principle to cover nonholonomic
constraints by the application of the multiplier theorem of variational calculus are discussed. The
reason for the problems is subtle and is discussed, together with the reason why the proper account
of nonholonomic constraints is outside the scope of Hamilton’s variational principle. However,
linear velocity constraints remain within the scope of D’Alembert’s principle. A careful and
comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic
constraints. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

The action integral,

S5E
t1

t2
L~q,q̇,t !dt, ~1!

plays a central role in the dynamics of physical systems de-
scribed by a LagrangianL. Hamilton’s principle states that
the actual pathq(t) of a particle is the path that makes the
actionS a minimum. It is well known that Hamilton’s prin-
ciple,

dS5dE
t1

t2
L~q,q̇,t !dt50, ~Hamilton’s principle!, ~2!

when applied to problems involvingc-holonomic constraints
with the geometric form,

f k~q1 ,q2 ,...,qn ,t !50, ~k51,2,...,c!, ~3!

leads to Lagrange’s equations of motion whose solution pro-
vides the time dependence of the (n2c) independent gener-
alized coordinatesqj for the unconstrained degrees of free-
dom.

For problems that require additional calculation of the
forcesQj

c of holonomic constraint, Hamilton’s principle may
be generalized to yield correct results simply by replacingL
in Eq. ~2! by

L†5L~q,q̇,t !1 (
k51

c

lk~ t ! f k~q,t !, ~4!

where thelk are Lagrange multipliers. Equation~2! is there-
fore replaced by Hamilton’s generalized principle,

dS†5dE
t1

t2
L†~h,ḣ,t !dt50,

~Hamilton’s generalized principle!, ~5!

from which the Euler–Lagrange equations

d

dt S ]L†

]ḣ j
D2

]L†

]h j
50, ~ j 51,2,...,n1c! ~6!

can be derived viafree variations of the extended seth
[$q(q1 ,q2 ,...,qn),l(l1 ,l2 ,...lc)% of the (n1c) variables
involved in Eq.~5!. Becausef k(q,t) are independent of the
generalized velocityq̇, the first n-equations of the Euler–

Lagrange set~6! provide the correct equations of state. Be-
cause Eq.~4! is independent ofl̇k , the lastc equations of
the Euler–Lagrange set~6! for the lk (k51,2...,c) simply
reproduce the equations~3! of holonomic constraint.

A recurring theme1–4 is whether Hamilton’s principle~2!
may be similarly generalized so as to treat nonholonomic
~dynamic! constraints,

gk~q,q̇,t !50, ~7!

which depend on generalized velocitiesq̇, simply by substi-
tuting

L* 5L1 (
k51

c

lk~ t !gk~q,q̇,t ! ~8!

for L in Eq. ~2!. A theorem in the calculus of variations
appears, at first sight, tailor-made for such a conjecture. The
theorem5–7 states that the pathq(t) that makes the action Eq.
~1! have an extremum under the side conditions~7! is the
same as the path that makes the modified functional,S*
5* t1

t2L* (h,ḣ,t)dt, an extremum, without any side condi-

tions imposed. On the basis of this multiplier rule, the con-
jecture, the substitution of Eq.~8! in Eq. ~2!, was simply
adopted without reservation for the general case~7! and
equations of state were published.1–3

This conjecture becomes problematic, particularly because
the multiplier rule does not yield the standard equations of
state as obtained from D’Alembert’s more basic principle for
systems with less general nonholonomic constraints,

gk
~L !~q,q̇,t !5(

j 51

n

Ak j~q,t !q̇ j1Bk~q,t !50, ~9!

which are now only linear in the velocitiesq̇ j . Yet, the same
multiplier rule5–7 works for the holonomic constraints in Eq.
~3!.

The question of whether the use of Eq.~8! in Eq. ~2! is a
viable generalization of Hamilton’s principle is of interest
here, because Ref. 1 advocates its use and cites the equations
of state derived from it.3 However, this generalization had
previously been acknowledged4 as being incorrect because it
did not reproduce the correct equations of state for systems
under linear constraints in Eq.~9!. Some textbooks8–11 also
have indicated the fallacy of using Eq.~8! in Eq. ~2!. How-
ever, the basic reason for its failure has remained obscure.
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The multiplier rule5–7 is indeed correct, as stated, so the fact
that it works for holonomic constraints~3!, but not for non-
holonomic constraints~7! poses a dilemma.

Many examples can be given that explicitly illustrate that
Eq. ~8! does not provide the correct results as obtained from
Newtonian mechanics.12 In this paper, we search for the rea-
son why the procedure fails and, in so doing, we also explain
why the proper account of nonholonomic constraints given
by Eqs.~7! and ~9! is outside the scope of Hamilton’s prin-
ciple, even though the linear constraints in Eq.~9! remain
within the scope of D’Alembert’s principle. We will find the
conditions that Eq.~8! must satisfy for valid substitution into
Eq. ~2!. We also will indicate why the general nonholonomic
constraints in Eq.~7! are outside the scope of a principle
based on virtual displacements. Rather than beginning from
Eq. ~2! and showing, as has been done, that an application
involving Eq.~7! or ~9! leads to erroneous results,4,8–12more
insight can be gained by tracing the various stages of devel-
opment of the variational principle, Eq.~2!, from the more
fundamental principle of D’Alembert. The essential reason
will then become apparent.

Because variational theorems and methods are essential
tools of modern analytical dynamics and because various
fallacies underlying their use are subtle and are not generally
well appreciated, it is hoped that the following account will
help illuminate their scope of application.

II. THEORY

We first outline some standard deductions of D’Alembert’s
principle, which is then expressed in a useful variational
form that will provide a ‘‘royal road’’ from which Hamilton’s
principle can be easily extracted. The resolution of why the
extended Lagrangian Eq.~4! works, while Eq.~8! does not,
in Hamilton’s principle, Eq.~2!, will then become apparent
via this approach.

A. Differential form of D’Alembert’s principle

The motion of a system of particles,i 51,2,...,N of mass
mi located atr i(t) in an inertial frame of reference is gov-
erned by Newton’s equations,

Fi1Fi
c5mi r̈ i , ~10!

where the net force acting on each particle is decomposed
into an active forceFi and a forceFi

c of constraint. A virtual
displacementdr i is an instantaneous variation from a given
configurationr i performed at a fixed timet and taken con-
sistent with the constraints at that time. The summation con-
vention, ai j qj[( j 51

n ai j qj for repeated indicesj will be
adopted.

Assume that the total virtual workFi
c"dr i performed by all

the constraining forces is zero. D’Alembert’s principle, in
both Newtonian r i ( i 51,2,...,N) and generalizedqj ( j
51,2,...,3N) coordinate versions, states that1,8–10,13

~mi r̈ i2Fi !"dr i5F d

dt S ]T

]q̇ j
D2

]T

]qj
2Qj Gdqj50, ~11!

where the total kinetic energyT5 1
2mi ṙ i

2(q,q̇,t) is expressed
in terms of then53N generalized coordinates of all the
particles. The generalized force,

Qj[Fi "
]r i

]qj
, ~12!

is such that the virtual workQjdqj5Fi "dr i is equivalent in
both representations and may be decomposed into a potential
part,

Qj
(P)~q,q̇,t ![

d

dt S ]U

]q̇ j
D2

]U

]qj
, ~13!

derived from a generalized monogenic~the same for all par-
ticles! potential U(q,q̇,t) and a nonpotential partQj

NP

5Fi
NP"]r i /]qj . D’Alembert’s principle is then

F d

dt S ]L

]q̇ j
D2

]L

]qj
2Qj

NPGdqj50, ~D’Alembert’s principle!,

~14!

where the Lagrangian is

L~q,q̇,t !5T~q,q̇,t !2U~q,q̇,t !. ~15!

B. Holonomic constraints

When thec-constraint conditions in Eq.~3! are utilized to
reduce the number of generalized coordinates fromn to the
minimum number (n2c) of actual independent degrees of
freedom, that is, when the constraints are embedded within
the problem at the outset, then all the (n2c) dqj ’s in Eq.
~14! are independent of each other. Because each displace-
ment can take on any value at eacht, the satisfaction of
D’Alembert’s principle, Eq.~14!, demands that each coeffi-
cient of dqj in Eq. ~14! separately vanishes to yield
Lagrange’s equations,1,8–10,13

d

dt S ]L

]q̇ j
D2

]L

]qj
5Qj

NP, ~16!

for the (n2c) independent degrees of freedom.
When the holonomic constraints Eq.~3! are not used to

reduce the set of generalized coordinates to this minimum
number, that is, when they are instead ‘‘adjoined,’’ thenc of
the dqj ’s in Eq. ~14! depend on the independent (n2c) co-
ordinates and are constrained by thec conditions,

] f k

]qj
dqj50, ~k51,2,...,c! ~17!

which is obtained by differentiating Eq.~3! and keepingt
fixed. The Lagrange multiplierslk(t) can then be introduced
by subtracting the quantitylk(] f k /]qj )dqj50 from the left-
hand side of Eq.~14! to give

F d

dt S ]L

]q̇ j
D2

]L

]qj
2lk~ t !

] f k~q,t !

]qj
2Qj

NPG
3dqj~ t !50. ~ j 51,2,...,n!. ~18!

Nonpotential forcesQj
NP are included in Eq.~18!. If we

denote the m5n2c independent~free! coordinates by
q1 ,q2 ,...,qm and the c-dependent ones by
qm11 ,qm12 ,...,qn , then the previously unassignedc multi-
pliers,lk , are now chosen to satisfy thec equations,

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~ t !

] f k~q,t !

]qj
1Qj

NP

~ j 5m11,m12,...,n!. ~19!

Equation~18! then reduces to
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F d

dt S ]L

]q̇ j
D2

]L

]qj
2lk~ t !

] f k~q,t !

]qj
2Qj

NPG
3dqj~ t !50, ~ j 51,2,...,m! ~20!

for the freem5n2c coordinates. Because them dqj ’s in
Eq. ~20! are all independent and arbitrary, each of thedqj
coefficients in Eq.~20! must separately vanish. The set,

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~ t !

] f k~q,t !

]qj
1Qj

NP, ~ j 51,2,...,n!,

~21!

therefore represents the equations of state for the full array of
dependent and independent variablesq1 ,q2 ,...,qn .

Now adjoin the constraint equations~3! to the Lagrangian
set in Eq.~21! of n-equations to providen1c equations for
then1c unknowns, then qj ’s and thec lk’s, so that the sets
q[$qj% and l[$lk% may in principle be determined. By
comparing Eq. ~21! with Eq. ~16!, it is seen thatQj

c

5lk(] f k /]qj ) are additional forces acting on the system.
TheseQj

c must therefore be the forces of constraint which,
because of Eq.~17!, do no virtual work, as required for the
validity of D’Alembert’s principle. Although standard,1,8–13

the above review will help provide the context to what now
follows.

Becausef k is independent of the velocitiesq̇, a general-
ized D’Alembert principle,

F d

dt S ]L†

]ḣ j
D2

]L†

]h j
2Qj

NPGdh j50, ~ j 51,2,...,n1c!

~D’Alembert generalized principle!, ~22!

can therefore be introduced whereL†(ḣ,h,t)5L
1lk(t) f k(q,t) is an augmented Lagrangian over an ex-
tended set of coordinatesh[(q,l). On regarding allh j as
free, then

d

dt F]~L1lkf k!

]ḣ j
G2

]~L1lkf k!

]h j
5Qj

NP, ~ j 51,2,...,n1c!

~23!

are the generalized Lagrange equations for the extended set
h j . The firstn equations of Eq.~23! reproduce the correct
equations of state,~21!, and the lastc equations reproduce
the constraint equations,f k50. Hence, D’Alembert’s prin-
ciple in Eq.~14!, with the displacementsdqj subject to thec
conditions in Eq.~17!, is equivalent to the generalized prin-
ciple, Eq.~22!, with all coordinatesh j free. The replacement
of the basic principle Eq.~14! with the subsidiary conditions
Eq. ~17! by the generalized principle Eq.~22! without sub-
sidiary conditions is the Lagrange multiplier rule. Both prin-
ciples provide identical equations of state, Eq.~21!, and the
multiplier rule in Eq.~22! provides the shortcut.

It is important to note that the displaced pathsqj1dqj ,
not only comply with the essential conditions in Eq.~17! for
the displacements, but also satisfy the equations of con-
straint,

f k~q1dq,t !5 f k~q,t !1d f k~q,t !50, ~24!

because there is no changed f k5(] f k /]qj )dqj50 to the
constraint Eq.~3!. The displaced paths are therefore all geo-
metrically possible because they all conform to Eq.~24!. The
key requirement for application of the multiplier rule is that

the displaced paths must be geometrically possible by satis-
fying the equations~24! of constraint. As will be shown next,
this condition is violated, in general, by nonholonomic con-
straints.

C. Nonholonomic constraints

The virtual displacementsdqj for nonholonomic systems
with c linear constraints,

gk
~L !~q,q̇,t !5Ak j~q,t !q̇ j1Bk~q,t !50, ~25!

obeyed by the actual path, are themselves constrained to
obeyc instantaneous conditions

Ak j~q,t !dqj50, ~k51,2,...,c! ~26!

obtained by first writing Eq.~25! in differential form as

gk
~L !dt5Ak j~q,t !dqj1Bk~q,t !dt, ~27!

and then by settingdt50 anddqj5dqj as prescribed. As
with Eq. ~17!, the linear conditions~26! also may be ab-
sorbed in D’Alembert’s principle because Eq.~14! is linear
in dqj . By addinglkAk jdqj50 to the right-hand side of Eq.
~14!, and by proceeding as before in Sec. II B, the equations
of state under the linear constraints in Eq.~25! are obtained
in the form

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~q,t !Ak j~q,t !1Qj

NP, ~ j 51,2,...,n!

~28!

for all the coordinates. We now examine the validity of
D’Alembert’s generalized principle

H d

dt F]~L1mkgk!

]ḣ j
G2

]~L1mkgk!

]h j
2Qj

NPJ dh j50,

~ j 51,2,...,n1c!, ~29!

applied to nonholonomic constraints Eq.~7!, wheremk(t) are
a different set of multipliers and where alldh j are regarded
as free. On introducingGk j , where

Gk j5F d

dtS ]gk

]q̇ j
D2

]gk

]qj
G ~ j 51,2,...,n!, ~30!

and is zero forj .n, Eq. ~29! can be rewritten as

F d

dtS ]L

]ḣ j
D2

]L

]h j
1ṁk

]gk

]ḣ j
1mkGk j2gk

]mk

]h j
2Qj

NPGdh j50,

~ j 51,2,...,n1c!. ~31!

The first n equations of Eq.~31! provides the equation of
state,

d

dtS ]L

]q̇ j
D2

]L

]qj
52ṁk

]gk

]ḣ j
2mkGk j1Qj

NP ~ j 51,2,...,n!,

~32!

as derived from D’Alembert’s generalized principle, Eq.
~29!. The lastc equations of Eq.~31! yield the constraint
equations~7!, as expected. But Eq.~32! reproduces the cor-
rect equation~28! of state for the linear constraints in Eq.
~25!, only when Eq.~30! for linear constraints vanishes, that
is, provided

Gk j
~L !5F S ]Ak j

]qi
2

]Aki

]qj
D q̇i1S ]Ak j

]t
2

]Bk

]qj
D G50. ~33!
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Because condition Eq.~30! is basic to validity of Eq.~29!,
the significance of this auxiliary restriction on the linear con-
straints~25! will now be explored.

In order for Eq.~25! to be a perfect~exact! differential of
a function f k(q,t), we must have

Aki~q,t !q̇i1Bk~q,t !5
d

dt
f k5

] f k

]qi
q̇i1

] f k

]t
. ~34!

The correspondenceAki5] f k /]qi andBk5] f k /]t provides
the ~necessary and sufficient! conditions

]Aki

]qj
5

]2f k

]qj]qi
5

]2f k

]qi]qj
5

]Ak j

]qi
, ~35!

]Bk

]qi
5

]2f k

]qi]t
5

]2f k

]t]qi
5

]Aki

]t
, ~36!

for the ‘‘exactness’’ of Eq.~25!. Provided the linear con-
straints~25! satisfy conditions~35! and ~36!, an integrated
form f k therefore exists but may be unknown. Such con-
straints are termedsemiholonomicand are denoted by
gk

~sh!(q,q̇,t)50. But the conditions~35! and ~36! for exact-
ness yield condition Eq.~33!, for all q̇i which satisfy the
constraints. Semiholonomic constraints can therefore be cor-
rectly treated by D’Alembert’s generalized principle, Eq.
~29!. In addition to exactness, semiholonomic constraints
(Gk j

(L)50) possess a further important property. The equa-
tions of constraint appropriate to the displaced pathsq1dq
are

gk~q1dq,q̇1dq̇,t !5gk~q,q̇,t !1dgk~q,q̇,t !. ~37!

Becausegk(q,q̇,t)50 for the true dynamical pathq(t), the
constraint equations for the displaced paths change by

dgk5
]gk

]qj
dqj~ t !1

]gk

]q̇ j
dq̇ j~ t !. ~38!

With the aid ofdq̇ j (t)5d@dqj (t)#/dt, this difference is

dgk5
d

dtF]gk

]q̇ j
dqj~ t !G2Gk jdqj~ t !. ~39!

The condition for the displaced paths to be all geometrically
possible is thatgk(q1dq,q̇1dq̇,t)50, that isdgk50 and
the constraints are invariant to displacements. For the linear
constraints~25!, Eq. ~39! reduces to

dgk
~L !5

d

dt
~Ak jdqj !2Gk j

~L !dqj . ~40!

On invoking the basic restriction~26! on the displacements
and the exactness conditionGk j

(L)50, Eq. ~40! reduces to
dgk

~sh!50, which implies geometrically possible paths.
D’Alembert’s generalized principle~29! with Eq. ~25! there-
fore holds for semiholonomic systems where the displaced
paths are all geometrically possible. Semiholonomic systems
are, in essence, holonomic, although the integrated holo-
nomic form f k50 may not be known.

Linear constraints~25! can be integrable and yet violate
the exactness condition~33!. For example, the constraint,

g1
(sh)~q,q̇!5~3q1

212q2
2!q̇114q1q2q̇250, ~41!

is exact because~33! is satisfied and it integrates directly to
give f 15q1

312q2
2q15constant. The constraint,

g2
(I )~q,q̇!5~4q113q2

2!q̇112q1q2q̇250, ~42!

is not exact but can be integrated via the integrating factor
F2 (5q1

2) to give f 25q1
41q1

3q2
25constant. All exact con-

straints are therefore integrable, but all integrable constraints
are not necessarily exact. The conditions~35! and ~36! are
too restrictive for integrable constraintsgk

(I ) , which can how-
ever be rendered in exact form by multiplying by the inte-
grating factorFk(q,t). Thengk

(sh)5Fkgk
(I ) now satisfies the

condition~33! for both exactness and geometrically possible
displaced paths. For example, the constraint,

g2
(sh)~q,q̇!5F2g2

(I )5~4q1
313q1

2q2
2!q̇112q1

3q2q̇250,
~43!

now satisfies condition~33! and is therefore in exact~semi-
holonomic! form. A known integrating factorFk implies a
known integrated holonomic formf k50, so that the simpler
holonomic result Eq. ~23! can be used rather than
D’Alembert’s generalized principle~29!.

The linear constraints~25! which do not satisfy the exact-
ness condition ~33! are classified as nonholonomic.
D’Alembert’s generalized principle~29! is therefore not ap-
propriate for nonholonomic constraints~25!, as is also con-
firmed by the fact that Eq.~32! is not the correct equation
~28! of state, becauseGk j

(L)Þ0, in general.
D’Alembert’s basic principle, Eq.~14!, is not amenable to

general nonholonomic constraints~7!, because there is now
no relation such as Eq.~26! which connects the displace-
mentsdqj in a linear form. The fact that Eq.~7! is, in gen-
eral, not a linear function ofq̇ j prohibits writing a linear
interrelation between thedqj ’s essential for the application
of D’Alembert’s principle. General nonholonomic con-
straints~7! are therefore outside the scope of all principles
based on virtual displacements.

The key conclusions of Secs. II B and II C are the follow-
ing:

~1! D’Alembert’s basic principle, Eq.~14!, is applicable to
holonomic and linear nonholonomic constraints, as is al-
ready known.

~2! D’Alembert’s generalized principle, Eq.~22!, applies to
holonomic constraints and Eq.~29! applies to semiholo-
nomic systems, because the displaced paths are also geo-
metrically possible paths, an essential criterion for the
validity of the underlying multiplier rule. The solution of
both sets provides the actual path$qj (t)% and the con-
straint forces$Qj

c%.
~3! The displaced pathsqj1dqj for linear nonholonomic

systems are not geometrically possible and therefore do
not satisfy the multiplier-rule condition.

~4! It is important to distinguish restrictions imposed on vir-
tual displacements, such as Eq.~26!, from the actual
equations of constraint, such as Eq.~9!, which must only
be satisfied within the equations of state that are eventu-
ally determined by some variational procedure. The con-
straint equationsgk(q,q̇,t)50 satisfied by the true dy-
namical pathq(t) do not necessarily imply that the
corresponding equationsgk(q1dq,q̇1dq̇,t)50 are sat-
isfied by the displaced paths.

~5! General nonholonomic constraints~7! are completely
outside the scope of even the most fundamental principle
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of D’Alembert. The generalization1–3 of any principle
based on Eq.~14! to general nonholonomic constraints is
without foundation.

D. The dL version of D’Alembert’s principle

The Lagrangian for the varied paths is

L~q1dq,q̇1dq̇,t !5L~q,q̇,t !1dL~q,q̇,t !, ~44!

where the change inL due to the virtual displacementdqj
from the actual pathq is

dL5
]L

]qj
dqj~ t !1

]L

]q̇ j
dq̇ j~ t !. ~45!

With the aid ofdq̇ j (t)5d@dqj (t)#/dt, the change is

dL5
d

dt
@pjdqj~ t !#2F d

dt S ]L

]q̇ j
D2

]L

]qj
Gdqj~ t !, ~46!

where the generalized momentum is defined aspj

5]L/]q̇ j . D’Alembert’s basic principle~14! can then be
recast indL form as

dL5
d

dt
~pjdqj !2Qj

NPdqj . ~47!

The differential version, Eq.~14!, and thedL version, Eq.
~44!, of D’Alembert’s principle are equivalent and are fun-
damental equations of dynamics. When the holonomic con-
straints~3! are adjoined, rather than embedded, there arec
dqj ’s in Eq. ~46! that are dependent on the remaining (n
2c) displacements. Because there is no change,d f k50, to
the holonomic equations~3! among the varied paths, we may
addd@lk(t) f k#50 to the left-hand side of Eq.~47!. By uti-
lizing the augmented LagrangianL† over the extended set of
free generalized coordinatesh[(q,l), the generalized ver-
sion of D’Alembert’s principle, Eq.~47!, is

dL†~ḣ,h,t !5d@L1lk~ t ! f k~q,t !#5
d

dt
~pjdh j !2Qj

NPdh j .

~48!

If we use the definition~46! for dL, the generalized version
~48! reproduces the correct equations of state, Eq.~21!, and
provides another example of the multiplier rule.

For semiholonomic systems, the LagrangianL can also be
replaced by L (sh)5L1mkgk

(sh) because the constraints
gk

(sh)(q,q̇,t)50 are exact, thereby satisfying the condition
dgk

(sh)50 for geometrically possible paths. D’Alembert’s
generalized principle~47! therefore yields the equations of
state

d

dt F]~L1mkgk
(sh)!

]ḣ j
G2

]~L1mkgk
(sh)!

]h j

5Qj
NP, ~ j 51,2,...,n1c! ~49!

for the extended coordinates (h[q,m) for a semiholonomic
system. The multiplier rule of replacingL in Eq. ~47! by
L* 5L1mkgk is, however, not valid for inexact linear or
general nonholonomic constraints, because the displaced
paths are not geometrically possible paths, as explained in
Sec. II C.

E. Generalization of Hamilton’s variational principle

Hamilton’s integral principle,

E
t1

t2
dL dt5dE

t1

t2
L dt5@pjdqj # t1

t22E
t1

t2
@Qj

NPdqj #dt,

~50!

is D’Alembert’s principle, Eq.~47!, integrated between the
times t1 and t2 . Thed operator does not affect the time and
was therefore taken outside the integral. The appropriate Eq.
~28! for linear nonholonomic constraints is recovered by
making the time integration in Eq.~50! redundant. The ap-
plication of Eq.~50! then reduces simply to an application of
D’Alembert’s basic principle~14!, as in Sec. II C. The main
advantage, however, of the integral principle Eq.~50! is that
it becomes a variational principle,

dS5dE
t1

t2
L dt50, ~51!

by admitting only those pathsqj (t) that pass through the
fixed end points,dqj (t1,2)50, and by considering only po-
tential systems, that is,Qj

NP50. The virtual variationd en-
sures that the transit timet5t22t1 remains the same for all
the varied paths. Equation~51! is Hamilton’s principle for
the least actionS5* t1

t2L dt.

When attempting to generalize Hamilton’s variational
principle, Eq.~51!, the conditions for generalization of the
more fundamental differential anddL versions, Eqs.~14! and
~47! of D’Alembert’s principle by the multiplier rule, are still
in effect. Equation~51! can be directly applied to holonomic
systems with the embedded constraints in Eq.~3! to recover
the correct equations of state~16! with Qj

NP50. When holo-
nomic constraints are adjoined in order to determine the con-
straint forces, thenL in Eq. ~51! can be replaced byL†5L
1lk(t) f k(q,t), becaused f k50, to give Hamilton’s gener-
alized principle

dS†5dE
t1

t2
L†~ḣ,h,t !dt5dE

t1

t2
@L1lk~ t ! f k~q,t !#dt50,

~52!

where thedh j ’s involved are free and independent. For
semiholonomic constraints, Hamilton’s principle is general-
ized to

dS(sh)5dE
t1

t2
L (sh)~ḣ,h,t !dt

5dE
t1

t2
@L1mk~ t !gk

(sh)~q,q̇,t !#dt50. ~53!

The essential reason for the validity of~52! and ~53! is that
the pathsq1dq admitted into the variational procedures are
all geometrically possible, that isd f k50 anddgk

(sh)50 and
that thed and* operations commute. The correct equations
of state~19! and ~49! with Qj

NP50 are recovered from~52!
and ~53!, respectively. Becausegk

(sh) is, by definition, the
perfect differentiald fk /dt, then provided thatf k is known,
Eq. ~53! reduces to
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dS(sh)5dE
t1

t2FL1
d

dt
~mkf k!2ṁkf kGdt

5dE
t1

t2
@L2ṁk~ t ! f k~q,t !#dt50, ~54!

the holonomic form~52!, as expected. The relationship be-
tween the multipliers islk52ṁk , as also shown in Sec.
II C.

Hamilton’s variational principle~51! cannot be general-
ized to inexact linear or more general nonholonomic con-
straints, Eq.~9! or ~7!, by replacingL by L1mkgk in Eq.
~51!, as has been suggested.1–3The fact thatdgkÞ0 for these
cases implies that the varied paths are not geometrically pos-
sible. We have shown that generalization of Hamilton’s and
D’Alembert’s principles rests on the multiplier rule which
demands that the varied paths be geometrically possible, a
property reserved only for holonomic and semiholonomic
systems.

F. Validity of generalized principles and multiplier rule

The generalized principles of D’Alembert and Hamilton
are effected by the multiplier rule~see the Appendix!. The
theorem~rule! applies only when all varied paths (q1dq)
preserve the side conditionsgk(q1dq,q̇1dq̇,t)50, that is
the dq variation causes no changedgk50 to gk . The dis-
placed paths are then geometrically possible in that they sat-
isfy the same equations of constraint. It is only for holo-
nomic and semiholonomic constraints that the appropriate
criteria,d f k50 anddgk

(sh)50, are satisfied. For all nonholo-
nomic constraints, the conditionsgk50 cannot be satisfied
by the displaced paths and are therefore not good constant
side conditions, as the multiplier rule demands. The invari-
ance of the constraint equations to displacements is the key
condition for application of the multiplier rule. The applica-
tion of Eq.~6! to nonholonomic constraints is therefore with-
out justification.

III. A TEST CASE

Some of these key points may be tested by the physical
system depicted in Fig. 1. The solution of this spinning–
rolling problem does not appear to have been provided in
any standard textbook, although the limiting cases of rolling
without spinning down a plane1 and rolling–spinning on a
horizontal plane8,10 have been analyzed. Letr c.m.5x î1y ĵ

1zk̂ be the Cartesian coordinate of the center of mass~c.m.!
of the coin of massM and radiusR, where the originO is at

the top of plane and where the directionsî , ĵ , andk̂ form a

Cartesian (X,Y,Z) fixed set of axes, withî pointing directly
downward along the plane. Letu andf be the angles asso-
ciated with the rolling and spinning motions about the sym-
metry axis~which is perpendicular to the coin! and the axis
pointing alongk̂, the fixed outward normal to the plane. The
Lagrangian is

L5 1
2 M ~ ẋ21 ẏ2!1 1

2 I Su̇21 1
2 I Dḟ21Mgx sina, ~55!

where I S5bMR2 and I D are the moments of inertia of the
body about the symmetry axis and the fixedZ-figure axis,
respectively. Cases involving a solid sphere, coin, solid cyl-
inder, spherical shell, hoop, or cylindrical shell, can be
treated by takingb52/5, 1/2, 1/2, 2/3, 1, and 1, respectively.

Rolling without spinning: ẏ50, ḟ50. This example is a
simple test of our proof that semiholonomic~exact linear!
constraintsgk

(sh)(q,q̇,t)50 are covered by D’Alembert’s and
Hamilton’s generalized principles, Eq.~49! or Eq. ~53!, re-
spectively. The rolling constraintg5 ẋ2Ru̇50 is exact so
that the generalized principles should work. If we apply ei-
ther Eq.~49! or ~53! to the augmented Lagrangian,

L (sh)~h,ḣ!5 1
2 Mẋ21 1

2 I Su̇21Mgx sina1m~ ẋ2Ru̇ !,
~56!

for the extended seth5(x,u,m) of free coordinates, we ob-

tain the equations of state,Mẍ5Mg sina2ṁ, I Sü5ṁR, and

ẋ5Ru̇. When decoupled, these equations yield the accelera-
tion ẍ5g sina/(11b) and the frictional constraint forceṁ
which produces the torque needed for rolling motion,
@(b/(11b)#Mg sina, in agreement with standard
results1,8–10,13obtained from holonomic theory, Eq.~22!.

Rolling and spinning in two dimensions. We now test to
see if linear conditions exist between the displacementsdqj
needed for D’Alembert’s basic principle~14! and then see if
the constraints imply geometrically possible displaced paths,
as needed for the generalized principles. The constraint for
rolling is now

g18~ ẋ,ẏ,u̇ !5@ ẋ21 ẏ2#1/22~Ru̇ !250, ~57!

which is nonintegrable and quadratic in the generalized ve-
locities. There is no velocity component perpendicular tov̂
so that a second constraint is

g2~ ẋ,ẏ!5 ẋ sinf2 ẏ cosf50, ~58!

which is also nonintegrable, but linear in the generalized
velocities. That the coin remains upright implies that the cen-
ter of mass coordinates (x,y) are also those for the point of
contact of the coin with the plane and thatz5R, a holo-
nomic constraint which can be embedded from the outset
unless the normal reaction~constraint! of the plane on the

Fig. 1. An upright coin rolls and spins down an inclined plane of anglea.

Directions of space-fixed axes areî , ĵ , andk̂, as indicated. Coin rolls with

angular velocityvW Rot5 u̇ r̂ about axisr̂ which in turn spins with angular

velocity vW S5ḟ k̂ about fixed axisk̂. The center of mass has velocityvW
5Ru̇ t̂ .
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coin is sought. From Eqs.~57! and~58!, the virtual displace-
ments satisfy

~dx!21~dy!22R2~du!250, ~59!

dx sinf2dy cosf50. ~60!

The relation~60! is linear indqj and therefore amenable to
being absorbed into D’Alembert’s principle, Eq.~14!. The
quadratic relation~59! cannot be directly absorbed. Fortu-
nately, for this case, the offending quadratic constraint~57!
can be replaced by the combinationg1

25g18
22g2

2 of g18 and
g2 to give

g1~ ẋ,ẏ,u̇ !5 ẋ cosf1 ẏ sinf2Ru̇50, ~61!

which leads to the linear form,

dx cosf1dy sinf2Rdu50, ~62!

which is now suitable for application of D’Alembert’s prin-
ciple. The displaced pathsqj1dqj cause the changes,

dg15d ẋ cosf1d ẏ sinf2Rdu̇

2~ ẋ sinf2 ẏ cosf!df, ~63a!

dg25d ẋ sinf2d ẏ cosf1~ ẋ cosf1 ẏ sinf!df,
~63b!

in the constraint conditions~58! and ~61!. Becausedq̇ j

5d(dqj )/dt, then, on using the time derivatives of Eqs.~60!
and ~62! together with the relations~58!–~62!, dg1 anddg2

reduce to 0 andR( u̇df2ḟdu), respectively. Therefore, the
constraint~61! is semiholonomic. Integration yields the ho-
lonomic form x21y22R2u250. Because the sumd(lkgk)
5d(l2g2)Þ0, we cannot use D’Alembert’s or Hamilton’s
generalized principles, Eqs.~29! and ~53!, respectively, as
predicted.

Because the conditions~60! and~62! on the displacements
are now all linear, the problem can be solved by
D’Alembert’s basic principle~14!, or by its time-integrated
version, Hamilton’s integral principle~50!. The solution is
straightforward and reduces to the standard results8,10 for
horizontal motion (a50).

IV. SUMMARY AND CONCLUSIONS

This paper has presented the basic reason why Hamilton’s
variational principle and the more basic principle of
D’Alembert cannot be generalized by substituting the aug-
mented Lagrangian Eq.~8! in either Eq.~2! or Eq. ~14! to
cover general nonholonomic constraints, as the multiplier
rule5–7 in the calculus of variations might suggest.1–3 The
multiplier rule requires that the side conditionsgk50 be sat-
isfied by all varied paths, which must therefore be geometri-
cally possible. The displacementsdqj in nonholonomic sys-
tems violate this rule because they cause nonzero changes
dgkÞ0 in the constraint conditions and the displaced paths
are not geometrically possible. The constraintgk50 is satis-
fied only by the actual physical pathq(t) in configuration
space and not by the individual members of the family of
varied paths for nonholonomic systems. The multiplier rule
cannot therefore be used to generalize Hamilton’s or
D’Alembert’s principles to cover nonholonomic constraints.
It can however be applied to all holonomic and semiholo-

nomic ~exact linear! constraints which have the property that
all displaced paths are geometrically possible in accord with
the multiplier rule.

We have traced the development of various generalized
principles from D’Alembert’s basic principle in such a way
as to render transparent their scope of application. It is useful
to keep the following conclusions in mind.

~1! D’Alembert’s basic principle, Eq.~14!, is the most fun-
damental of all the principles considered here.

~2! D’Alembert’s basic principle, Eq.~14!, and Hamilton’s
variational principle, Eq.~2!, are well designed for holo-
nomic systems. Equation~16! is the equation of state.

~3! When constraint forces in holonomic systems are sought,
D’Alembert’s generalized principle, Eq.~22!, and
Hamilton’s generalized principle, Eq.~5!, are appropri-
ate, because the varied paths under holonomic con-
straints are all geometrically possible and the underlying
multiplier rule is then valid. Equation~6! is the equation
of state.

~4! The correct equations of state~28! for general linear
nonholonomic constraints are furnished only by
D’Alembert’s basic principle, Eq.~14!, or its time-
integrated version, Hamilton’s integral principle, Eq.
~50!.

~5! As shown here, the generalized principles, Eqs.~29! and
~53!, are valid for semiholonomic systems. In these gen-
eralized principles, the constraints are automatically in-
cluded and the displacementsdh j are all free. Equation
~49! is the equation of state for semiholomic systems,
that is, those which satisfy conditions for exactness and
therefore geometrically possible displaced paths.

~6! Generalized principles are inappropriate for linear non-
holonomic constraints, because the constraint equations
gk50 are not exact and change from varied path to var-
ied path. The underlying multiplier rule then loses valid-
ity.

~7! The theory for nonholonomic constraints with a general
velocity dependence remains outside the scope of the
most fundamental principle, Eq.~14! of D’Alembert. It
is impossible to extract from the equationsgk50 of gen-
eral nonholonomic constraints the linear relation be-
tween the dqj ’s required for the application of
D’Alembert’s principle unless the constraints are either
linear in velocity or holonomic. Nonholonomic con-
straints are therefore outside the scope of any of the prin-
ciples based on D’Alembert’s principle.

The above conclusions reflect the intrinsic merit of recon-
structing the variational principle, Eq.~2!, from the more
fundamental D’Alembert principle, Eq.~14! via Eq. ~47!, so
that the validity of the various stages involved becomes di-
rectly exposed. Pitfalls1–3 can easily occur by arbitrarily in-
voking the multiplier rule to assert generalized principles
such as Eqs.~29! and~53!, without first ascertaining the criti-
cal but hidden condition that the varied paths must be geo-
metrically possible. We have shown here that the condition is
satisfied only for holonomic and semiholonomic systems.

General nonholonomic constraints~7! can be analyzed by
other principles13 that involve, for example, the virtual ve-
locity ~Jourdain! displacements, constructed by maintaining
both the configurationq and timet fixed, in contrast to vir-
tual displacementsdqj which keep onlyt fixed. The Jourdain
variational principle is the subject of a separate paper.14
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APPENDIX: THE MULTIPLIER THEOREM

We will determine the pathsqi(t); i 51,2,...,n that pro-
vide an extremum to the functional

J5E
t1

t2
F~q,q̇,t !dt, ~A1!

subject to thec,n-finite auxiliary ~side! conditions

gk~q,q̇,t !50. ~k51,2,...,c! . ~A2!

A basic theorem5–7 in the calculus of variations can be
invoked, provided we admit to the variational competition
only those curvesq(t) that satisfy fixed end-point conditions
dq(t1,2)50 andc-finite fixed side conditions as in Eq.~A2!.
The varied curves must all be geometrically possible by sat-
isfying gk(q1dq,q̇1dq̇,t)5gk(q,q̇,t)1dgk(q,q̇,t)50, so
that dgk50. The physical pathq(t) is then determined by
the extremum determined by the free variation of the modi-
fied functional,

J†5E
t1

t2
F†~q,q̇,t !dt[E

t1

t2
@F~q,q̇,t !1lk~ t !gk~q,q̇,t !#dt,

~A3!

without any side conditions imposed. The physical pathq(t)
then satisfies the Euler–Lagrange system of equations,

d

dt S ]F†

]ḣ j
D2

]F†

]h j
50, ~ j 51,2,...,n1c! ~A4!

for the extended seth[$q1 ,q2 ,...,qn ,l1 ,l2 ,...,lc% of (n
1c) variables. BecauseF† does not depend onl̇k(t), the
last c members of the set of equations~A4! reproduce the
side conditions~A2!. The validity of the multiplier theorem,
Eqs. ~A3! and ~A4!, rests on the fact that conditions~A2!
must be satisfied byall the varied paths therein, that is,
dgk50. This condition is satisfied for holonomic and semi-
holonomic constraints. It is not satisfied for nonholonomic
constraints becausedgkÞ0 for this case; the conditiongk

50 is satisfied only by the physical path to be eventually
determined. The theorem is therefore irrelevant to nonholo-
nomic systems.

However, the multiplier theorem is directly relevant to the
related principle1,8,11,13

DSA5DE
t1

t2
piq̇idt5@piDqi # t1

t250 ~A5!

of least abbreviated actionSA , valid for varied curves, all
chosen to obey the same constant HamiltonianH and to pass
through the end points, that is,Dqi(t1,2)50. It is similar in
form to Eqs.~50! and~51!. TheD operator causes nonsimul-
taneous variationsDqi5dqi1q̇iDt, which also involve dis-
placementsDt in time, in addition to the usual virtual dis-
placementsdqi . When the kinetic energyT reduces to a
homogeneous quadratic functionT25 1

2Mi j (q)q̇i q̇ j of the

generalized velocitiesq̇i , thenpiq̇i52T and the least action
principle, Eq. ~A5!, reduces to the Euler–Lagrange–
Maupertuis principle,1,8,11,13

DE
t1

t2
2T dt50, ~A6!

of least action. The multiplier theorem, Eqs.~A3! and ~A4!,
can now be applied to extract Lagrange’s equations from Eq.
~A6!. The condition for the variation~A6! is that the Hamil-
tonianH does not depend on time and remains fixed at the
same value for all the paths considered. In the sense that
(t,2H) are conjugate variables, the principle~A6!, which
admits paths with the same constantH, is complementary to
Hamilton’s variational principle, Eq.~2!, which admits only
those paths with the same transit timest5t12t2 into the
variation. ForT5T2 , H equals the total energyE5T1V, so
that Eq.~A6! becomes modified, under the fixed constraint
g5(T1V)2E50 for all varied paths, to finding a station-
ary value of

DE
t1

t2
@2T~q,q̇!1l~ t !$T~q,q̇!1V~q!2E%#dt50. ~A7!

The application8,11,13 of this modified version~A7! of the
Euler–Lagrange–Maupertuis principle leads directly to the
standard Lagrange’s equations~16!, with Qj

NP50 for poten-
tial systems.
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